publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. LiT: Unifying LiDAR “Languages” with LiDAR Translator
    Yixing Lao, Tao Tang, Xiaoyang Wu, Peng Chen, Kaicheng Yu, and Hengshuang Zhao
    In Annual Conference on Neural Information Processing Systems, 2024
  2. LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields
    Tang Tao, Longfei Gao, Guangrun Wang, Yixing Lao, Peng Chen, Hengshuang Zhao, Dayang Hao, Xiaodan Liang, Mathieu Salzmann, and Kaicheng Yu
    In ACM International Conference on Multimedia, Oct 2024
  3. AlignMiF: Geometry-Aligned Multimodal Implicit Field for LiDAR-Camera Joint Synthesis
    Tang Tao, Guangrun Wang, Yixing Lao, Peng Chen, Jie Liu, Liang Lin, Kaicheng Yu, and Xiaodan Liang
    In IEEE Conference of Computer Vision and Pattern Recognition, Jun 2024
  4. OpenSight: A Simple Open-Vocabulary Framework for LiDAR-Based Object Detection
    Hu Zhang, Jianhua Xu, Tao Tang, Haiyang Sun, Xin Yu, Zi Huang, and Kaicheng Yu
    In European Conference on Computer Vision, Jun 2024
    Series Title: Lecture Notes in Computer Science
  5. Towards Large-Scale 3D Representation Learning with Multi-Dataset Point Prompt Training
    Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, and Hengshuang Zhao
    In IEEE Conference of Computer Vision and Pattern Recognition, Jun 2024

2023

  1. An Analysis of Super-Net Heuristics in Weight-Sharing NAS
    Kaicheng Yu, Rene Ranftl, and Mathieu Salzmann
    IEEE Transactions on Pattern Analysis and Machine Intelligence, Jun 2023
  2. Painting 3D Nature in 2D: View Synthesis of Natural Scenes from a Single Semantic Mask
    Shangzhan Zhang, Sida Peng, Tianrun Chen, Linzhan Mou, Kaicheng Yu, Yiyi Liao, Xiaowei Zhou, and Haotong Lin
    In IEEE Conference of Computer Vision and Pattern Recognition, Jun 2023
  3. Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object Detection
    Kaicheng Yu, Tang Tao, Hongwei Xie, Zhiwei Lin, Zhongwei Wu, Zhongyu Xia, Tingting Liang, Haiyang Sun, Jiong Deng, Dayang Hao, Yongtao Wang, Xiaodan Liang, and Bing Wang
    In IEEE Conference on Computer Vision and Pattern Recognition Workshops, May 2023
  4. BEVHeight: A Robust Framework for Vision-based Roadside 3D Object Detection
    Lei Yang, Kaicheng Yu, Tao Tang, Jun Li, Kun Yuan, Li Wang, Xinyu Zhang, and Peng Chen
    In IEEE Conference of Computer Vision and Pattern Recognition, Mar 2023

2022

  1. NAS-Bench-Suite: NAS Evaluation is (Now) Surprisingly Easy
    Yash Mehta, Colin White, Arber Zela, Arjun Krishnakumar, Guri Zabergja, Shakiba Moradian, Mahmoud Safari, Kaicheng Yu, and Frank Hutter
    In International Conference on Learning Representations, Mar 2022
  2. Knowledge Distillation via the Target-aware Transformer
    Sihao Lin, Hongwei Xie, Bing Wang, Kaicheng Yu, Xiaojun Chang, Xiaodan Liang, and Gang Wang
    In IEEE Conference of Computer Vision and Pattern Recognition, Mar 2022
  3. BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework
    Tingting Liang, Hongwei Xie, Kaicheng Yu, Zhongyu Xia, Zhiwei Lin, Yongtao Wang, Tao Tang, Bing Wang, and Zhi Tang
    In Annual Conference on Neural Information Processing Systems, Nov 2022
  4. Learning Self-Regularized Adversarial Views for Self-Supervised Vision Transformers
    Tao Tang, Changlin Li, Guangrun Wang, Kaicheng Yu, Xiaojun Chang, and Xiaodan Liang
    IEEE Transactions on Pattern Analysis and Machine Intelligence, Oct 2022
    in submission
  5. {}alpha DARTS Once More: Enhancing Differentiable Architecture Search by Masked Image Modeling
    Bicheng Guo, Shuxuan Guo, Miaojing Shi, Peng Chen, Shibo He, Jiming Chen, and Kaicheng Yu
    Nov 2022
    arXiv:2211.10105 [cs]

2021

  1. Pyramid Architecture Search for Real-Time Image Deblurring
    Xiaobin Hu, Wenqi Ren, Kaicheng Yu, Kaihao Zhang, Xiaochun Cao, Wei Liu, Bjoern Menze, and TU Munchen
    In International Conference on Computer Vision, Nov 2021
  2. Landmark Regularization: Ranking Guided Super-Net Training in Neural Architecture Search
    Kaicheng Yu, Rene Ranftl, and Mathieu Salzmann
    In IEEE Conference of Computer Vision and Pattern Recognition, Apr 2021

2020

  1. Evaluating the Search Phase of Neural Architecture Search
    Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann
    In International Conference on Learning Representations, Nov 2020
  2. Generalized Class Incremental Learning
    Fei Mi, Lingjing Kong, Tao Lin, Kaicheng Yu, and Boi Faltings
    In IEEE Conference on Computer Vision and Pattern Recognition Workshops, Jun 2020

2019

  1. Overcoming Multi-Model Forgetting
    Yassine Benyahia, Kaicheng Yu, Kamil Bennani-Smires, Martin Jaggi, Anthony Davison, Mathieu Salzmann, and Claudiu Musat
    In International Conference on Machine Learning, Mar 2019
  2. Recurrent U-Net for Resource-Constrained Segmentation
    Wei Wang, Kaicheng Yu, Joachim Hugonot, Pascal Fua, and Mathieu Salzmann
    In International Conference on Computer Vision, Jun 2019

2018

  1. Statistically-motivated Second-order Pooling
    Kaicheng Yu, and Mathieu Salzmann
    In European Conference on Computer Vision, Jun 2018

2017

  1. Second-order Convolutional Neural Networks
    Kaicheng Yu, and Mathieu Salzmann
    Technical Report, arXiv:1703.06817 [cs.CV], Mar 2017
    arXiv: 1703.06817